
LLNL-PROC-512071

Observations and Modeling of Debris and
Shrapnel Impacts on Optics and
Diagnostics at the National Ignition
Facility

D. Eder, D. Bailey, F. Chamgers, I. Darnell, P. Di Nicola, S.
Dixit, A. Fisher, G. Gururangan, D. Kalantar, A. Koniges, W.
Liu, M. Marinak, N. Masters, V. Mlaker, R. Prasad, S. Sepke,
P. Whitman

November 8, 2011

International Fusion Science and Applications (IFSA)
Bordeaux, France
September 12, 2011 through September 16, 2011



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



 

Observations and Modeling of Debris and Shrapnel Impacts 
on Optics and Diagnostics at the National Ignition Facility 

D. Eder1,a, D. Bailey1, F. Chambers1, I. Darnell1, P. Di Nicola1, S. Dixit1, A. Fisher1, G.Gururangan1, 
D. Kalantar1, A. Koniges2, W. Liu2, M. Marinak1, N. Masters1, V. Mlaker1, R. Prasad1, S. Sepke1, 
and P. Whitman1     
 

1Lawrence Livermore National Laboratory, Livermore, CA, USA 
2Lawrence Berkeley National Laboratory, Berkeley, CA, USA 

Abstract. A wide range of targets with laser energies spanning two orders of 
magnitude have been shot at the National Ignition Facility (NIF). The National Ignition 
Campaign (NIC) targets are cryogenic with Si supports and cooling rings attached to an 
Al thermo-mechanical package (TMP) with a thin (30 micron) Au hohlraum inside. 
Particular attention is placed on the low-energy shots where the TMP is not completely 
vaporized. In addition to NIC targets, a range of other targets has also been fielded on 
NIF.  For all targets, simulations play a critical role in determining if the risks associated 
with debris and shrapnel are acceptable. In a number of cases, experiments were 
redesigned, based on simulations, to reduce risks or to obtain data. The majority of these 
simulations were done using the ALE-AMR code, which provides efficient late-time 
(100 – 1000X the pulse duration) 3D calculations of complex NIF targets.  

1 Introduction 
The National Ignition Facility (NIF) has a large number of optics and diagnostics that can be 
impacted by debris and shrapnel. A formal review process of evaluating risks associated with debris 
and shrapnel is in place and has been used for all NIF shots.  A critical component of the review 
process is simulation of targets and surrounding chamber components to determine the quantity and 
properties of all debris and shrapnel generated by the proposed shot. The majority of these 
simulations have been done using the ALE-AMR code, which combines Arbitrary-Lagrangian-
Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) [1]. Other codes, e.g., 
DYNA, have been also used for some assessments. Observations of impacts of debris and shrapnel 
are also a critical component of the review process. With respect to impacts to optics, one objective 
is to determine the risk to the 3-mm thick disposable debris shields (DDS’s), which are the optics 
closest to target center. Avoiding penetrations of these DDS’s by shrapnel fragments is important as 
well as controlling the amount of debris deposited, which reduces transmission. Penetrations and 
craters on DDS’s are observed using a final optics damage inspection (FODI) system. The number of 
optics inspected and the frequency of inspections depends on the calculated risks associated with a 
given shot. Observation of large craters means that there is a higher risk of the potential penetrations 
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in subsequent similar shots. Transmission loss in DDS’s is now done in situ using a new laser system 
that measures the loss in each DDS’s prior to shot and a decision can then be made to replace an 
optic depending on the requirements of the upcoming shot.  

Assessments of impacts/risks to diagnostics benefits from the ability to do a “debris test” prior to 
fielding a diagnostic for a target/laser configuration. In many cases, useful data can be obtained 
during a debris-test shot from other diagnostics or the use of a damage tolerant device, e.g., image 
plate, in place of the potential new device, e.g., charge coupled device (CCD), which cannot tolerate 
shrapnel impacts. Inspection of filters, pinholes, and collimators between the target and the device is 
required to determine if a diagnostic passes the debris test.  

The National Ignition Campaign (NIC) has a wide range of sub-campaigns to optimize target and 
laser parameters to obtain fusion in the laboratory. A drawing of a NIC target is given in the upper 
left image in Figure 1. (The thin waffled Al layer on the Si is not shown.) The major change between 
the sub-campaigns is the type of capsule that is inside and the laser parameters. In this paper, we 
focus on the re-emit campaign that requires less than 1% of NIF’s available energy. For this 
campaign, a high-Z Bi capsule is used and the symmetry of x-ray loading at the beginning of the 
ignition pulse is measured by imaging the x-rays re-emitted by the capsule.  

A wide range of other campaigns, in addition to NIC, have also obtained excited new data on 
NIF. In this paper, we given an example where modifications of the experiment based on simulations 
allowed data to be obtained.  

2 NIC Targets and associated impacts  
In order to calculate shrapnel fragments it is critical to do 3D simulations. However, if possible, one 
tries to exploit as much symmetry as possible. For the NIC re-emit target, we use a wedge (22.5 
degree) of ½ of the target. This means we are simulating 1/32 of the entire target but the simulation 
includes the Si and Al target components not included in other ICF simulations. (Other NIC 
simulations modeled ¼ of the target.) The target is shown on the lower left image of Figure 1 from 
an ALE-AMR simulation with boundaries not shown. We use an advanced multi-material interface 
reconstruction method coupled with AMR to allow accurate modeling of complex structures.  

To calculate the late-time dynamics of the re-emit target, we deposit 14 kJ in the Au hohlraum 
liner. The thin-walled Bi capsule is not included in the simulation but its impact on late-time 
dynamics is expected to be small. The simulation at 750 ns is shown on the lower right image in 
Figure 1. Temperature contours for all material with density greater than 0.5 g/cm3 are shown. 
Approximately 2/3 of the target is not vaporized at this late time. This solid and molten material is a 
potential risk to diagnostics and optics. The optics closest to the target are the DDS’s located 
approximately 7 m away. The laser passes through these DDS’s at angles of 23.5, 30.0, 44.5, and 50 
degrees as measured from the poles. To be conservative, we consider all material directed towards 
those angles plus and minus an additional 10 degrees. Based on mass and velocity of 
fragments/droplets, we calculate the risk of DDS penetration. If a region of solid is calculated to 
have failed because of stress loading, we bound the mass by the mass in each zone. For un-failed 
solid material, we use the calculated mass and velocity of all fragments. For molten material, we use 
a very conservative upper bound for mass corresponding to droplets 300 microns in diameter, which 
is the average thickness of the TMP. (We are developing and testing surface tension models for 
ALE-AMR that will allow the calculation of droplet sizes.) The fragment/droplet predicted by this 
simulation and analysis to have the greatest penetration capability is a solid fragment with a mass of 
0.08 mg and a velocity of 1.5 km/s. Such a fragment is calculated to not penetrate the 3-mm thick 
DDS’s.  (It is calculated to penetrate a 1-mm thick DDS.) Inspection of DDS’s by FODI following 
re-emit shots found no evidence of penetrations consistent with simulations. 

To evaluate risks to diagnostics, we generally do a “debris test,” in addition to simulations. Of 
course, such debris tests are not possible for optics. The primary diagnostics for the re-emit 
campaign are polar and equatorial CCD cameras located at the top and side of the target, 
respectively. To image the Bi capsule, two 4x4 pinhole arrays are placed close to the target. There 
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are two 500-micron thick collimators on either side of the pinhole array. We consider all material in 
the ALE-AMR simulation directed within 10 degrees of the pole and waist. For the polar instrument, 
the fragment/droplet with greatest penetration capability is a solid fragment with a mass of  0.08 mg 
and a velocity of 3 km/s. This fragment is calculated to not penetrate the 500-micron thick 
collimator. For the equatorial instrument, the solid fragment with the greatest penetration capability 
is less threatening being lighter and slower. For the assumed droplet size, there are droplets with 
masses of order 0.05 mg and velocities of order 7 km/s with greater penetration capability in the 
equatorial direction. However, these droplets are also calculated to not penetrate the 500-micron 
thick collimators. The front of the polar and equatorial collimators following three re-emit shots 
(first was for a debris test) are shown in Figure 2. We see a number of large craters but no 
penetrations, which is consistent with the simulations. Additional evaluation of filters during the 
debris test resulted in approval to use the CCD’s with excellent data obtained. 

3 Redesign of experiments using simulations 
In addition, to evaluating NIC experiments we use simulations to redesign experiments to reduce 

debris/shrapnel impact allowing critical data to be obtained. As an example of this work, we show 
results for a hard x-ray effects campaign that uses an epoxy hohlraum as an x-ray source and 
prefilters to block soft (low-energy) x-rays from striking thin samples. In the initial experiment for 
this campaign, the 8 thin samples located on a sample holder were damaged. We evaluated the 
configuration using ALE-AMR and determined that the calculated x-ray fluence of 6 J/cm2 incident 
on the prefilters causes them to be launched with sufficient velocity to destroy the samples as shown 
in the set of images on left side of Figure 3. There was also concern that high velocity debris from 
the target could also contribute to sample damage. We redesigned the sample holder to allow the 
filters to be tilted and provided an opening to allow the filter material to escape. The redesigned 
sample holder is shown in the lower right image of Figure 3. Simulations, shown in the upper right 
image in Figure 3, show that the prefilter no longer strikes the sample. In addition, the velocity of the 
prefilter is sufficiently slow (300 m/s) that high-velocity (30 km/s) debris from the target is blocked 
by the filter. Excellent data was obtained multiple times using the redesigned holder. 

 
4 Conclusions  
 

A wide range of targets have been fielded at NIF  and the use of 3-mm thick DDS’s has been shown 
to very effective. Simulations for NIC targets focused on lower energy campaigns where a 
significant fraction of the target is not vaporized. For the re-emit campaign using less than 1% of 
NIF’s available energy, we calculated that  2/3 of the target remaining solid or molten, but no 
fragments/droplets are expected to penetrate the DDS’s. This was confirmed by FODI inspections 
following the shots. The simulations also found that the 500-micron thick collimators should also not 
be penetrated. Inspections following the initial debris test and subsequent shots confirm the lack of 
penetrations. In some cases, it has been found necessary to redesign experiments to reduce the 
impact of debris and shrapnel. A campaign that studies the effect of hard x-rays striking thin samples 
was redesigned based on ALE-AMR simulations and excellent data was obtained. 	  
*	  Lawrence	  Livermore	  National	  Laboratory	  is	  operated	  by	  Lawrence	  Livermore	  National	  Security,	  LLC,	  for	  the	  U.S.	  
Department	  of	  Energy,	  National	  Nuclear	  Security	  Administration	  under	  Contract	  DE-‐AC52-‐07NA27344.	  
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Figure 2 Collimators in front of pinhole array for 3 re-emit shots in polar and equatorial positions. 

 
Figure 3 ALE-AMR simulation of initial and redesigned configuration along with sample holder. 
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Figure 1 NIC target and ALE-AMR simulation at t = 0 (materials) and t = 750 ns (temperature).  


